Note

Synthesis of a repeating pentasaccharide fragment of the capsular polysaccharide of *Streptococcus pneumoniae* type 18C

Augusta M.P. van Steijn, Jos G.M. van der Ven, Paul van Seeventer, Johannis P. Kamerling, and Johannes F.G. Vliegenthart

Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, P.O. Box 80.075, NL-3508 TB Utrecht (Netherlands)

(Received August 28th, 1991; accepted October 11th, 1991)

In the framework of our investigations on the development of synthetic vaccines¹, based on oligosaccharide conjugates, against infections by *Streptococcus pneumoniae* serotypes, attention has been focused on the preparation of structural elements of the capsular polysaccharide of serotype $18C^2$ (1), being one of the constituents of Pneumovax[©] 23. Recently, we have carried out³ the synthesis of the non-glycerol-phosphorylated elements β -D-Galp-(1 \rightarrow 4)- α -D-Glcp-(1 \rightarrow 3)- α -L-Rhap-OMe and α -D-Glcp-(1 \rightarrow 2)-[β -D-Glcp-(1 \rightarrow 4)]- β -D-Galp-(1 \rightarrow 4)- α -D-Glcp-(1 \rightarrow 3)- α -L-Rhap-OMe and α -D-Glcp-(1 \rightarrow 2)-[sn-Glycerol-(3-P \rightarrow 3)]-[β -D-Glcp-(1 \rightarrow 4)]- β -D-Galp-OMe.

$$\alpha$$
-D-Glc p -(1 \rightarrow 2)
[\rightarrow 4)- β -D-Glc p -(1 \rightarrow 4)- β -D-Gal p -(1 \rightarrow 4)- α -D-Glc p -(1 \rightarrow 3)- α -L-Rha p -(1 \rightarrow] $_n$
Glycerol-1-phosphate(\rightarrow 3)

1 (+1 OAc)

For the synthesis of the non-glycerol-phosphorylated pentasaccharide repeating unit, α -D-Glcp-(1 \rightarrow 2)-[β -D-Glcp-(1 \rightarrow 4)]- β -D-Galp-(1 \rightarrow 4)- α -D-Glcp-(1 \rightarrow 3)-L-Rhap (2 $\alpha\beta$), of the capsular polysaccharide of *S. pneumoniae* type 18C, the trisaccharide derivative benzyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl- β -D-galactopyranosyl)- α -D-glucopyranosyl]- α -L-rhamnopyranoside³ (3) was used as a key intermediate. This intermediate offers also the possibility to prepare the glycerol-phosphate-containing analogue of 2.

Deacetylation of 3 (\rightarrow 4), followed by benzylidenation afforded 5 (77% from 3). Coupling of 5 with ethyl 2,3,4,6-tetra-O-benzyl-1-thio- β -D-glucopyranoside⁴ in ether

Correspondence to: Dr. J.P. Kamerling, Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, P.O. Box 80.075, NL-3508 TB Utrecht, The Netherlands.

Proton/J	$\delta(\text{ppm})/J$ (Hz)						
	α-Rha	β-Rha	α -Glc'(α) b	α -Glc'(β) b	β-Gal"	α-Glc"	β-Gle""
H-1	5.153	4.863	5.081	5.107	4.655/2 °	5.338	4.672
H-2	4.126	4.147	3.625	3.625	3.758	3.519	3.355
H-3	3.861	3.683	3.939	3.941	3.864	3.733	3.507
H-4	3.546	3.476	3.811	3.803	4.189	3.443	3.423
H-5	3.906^{-d}	3.453^{d}	4.128	4.110	n.d.	4.083	3.42
CH ₃	1.292	1.309	_	_	_	_	_
J_1 ,	1.8	~ 0	3.8	3.8	8.1	3.9	8.1

TABLE I
500-MHz ¹H-NMR data ^a for pentasaccharide 2

with methyl triflate⁵ as the promoter yielded the tetrasaccharide derivatives 6α (50%) and 6β (26%), having the additional glucosyl unit in α - and β -(1 \rightarrow 2)-linkages, respectively. Selective opening of the 4,6-O-benzylidene ring of 6α , using sodium cyanoborohydride-hydrochloric acid in tetrahydrofuran⁶, gave the corresponding 6-benzyl ether (7, 51%). Condensation of 7 with 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide in dichloromethane-toluene, using silver triflate as the catalyst at -25° , gave 8 (77%). Deallylation⁷ of 8 (\rightarrow 9, 61%), then deacetylation, and debenzylation afforded the target compound $2\alpha\beta$ (91%). The ¹H-NMR data of 2, obtained by 2D COSY and 2D HOHAHA measurements, are presented in Table I.

^a Chemical shifts are relative to the signal of internal acetone (δ 2.225 ppm in D_2O). ^b Doubling of the α-Glc' series is due to the anomers of Rha. ^c Two chemical shift values due to the anomers of Rha. ^d Assignment of the anomeric configuration is also based on the δ values of Rha H-5 (ref. 11).

EXPERIMENTAL

General methods.—¹H-NMR spectra (360 and 500 MHz) were recorded at 25° with a Bruker HX 360 or AM 500 spectrometer (Bijvoet Center, Utrecht University). 2D Double-quantum-filtered ${}^{1}H-{}^{1}H$ correlation spectra (2D DQF ${}^{1}H-{}^{1}H$ COSY) were recorded in the phase-sensitive mode⁸, and 2D homonuclear Hartmann-Hahn spectra (2D HOHAHA) with a MLEV-17 mixing sequence of 120 ms (ref. 9). 13 C-NMR spectra (APT, 50 MHz) were recorded at 25° with a Bruker WP 200 spectrometer. Chemical shifts (δ) are given in ppm relative to the signal for internal Me₄Si (CDCl₃) or sodium 4,4-dimethyl-4-silapentane-1-sulfonate (D₂O; indirectly to internal acetone, δ 2.225) for ${}^{1}H$, and to the signal for internal Me₄Si (CDCl₃; indirectly to CDCl₃, δ 76.9) or external Me₄Si (D₂O; indirectly to internal acetone, δ 31.55) for 13 C.

Column chromatography was performed on Kieselgel 60 (Merck, < 230 mesh) and fractions were monitored by TLC on Kieselgel 60 F_{254} (Merck). Detection was effected by charring with H_2SO_4 after examination under UV light. Optical rotations were measured at 20° with a Perkin–Elmer 241 polarimeter, using a 10-cm 1-mL cell. In the workup procedures, washings were carried out three times with appropriate quantities of H_2O or aq 5% NaHCO₃ unless indicated otherwise. Solvents were evaporated under reduced pressure at 40° (bath). All solvents were distilled from appropriate drying agents.

Because of hygroscopicity, satisfactory elemental analyses of $2\alpha\beta$, 8, and 9 could not be obtained.

Benzyl 3-O-[4-O-(3-O-allyl-4,6-O-benzylidene-β-D-galactopyranosyl)-2,3,6-tri-O-benzyl- α -D-glucopyranosyl]-2,4-di-O-benzyl- α -L-rhamnopyranoside (5).—To a solution of benzyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl- β -D-galactopyranosyl)- α -D-glucopyranosyl]- α -L-rhamnopyranoside (3; 349 mg, 0.33 mmol) in MeOH (10 mL) was added sodium methoxide to pH 10. After stirring for 48 h, the mixture was neutralised with Dowex-50 (H⁺) resin, filtered, and concentrated. Column chromatography (75:25 CH₂Cl₂-EtOAc) of the residue gave 4, isolated as a syrup. To a solution of 4 in N,N-dimethylformamide (1 mL) and α , α -dimethoxytoluene (3 mL) was added p-toluenesulfonic acid (25 mg). The

solution was stirred overnight (TLC, 95:5 CH₂Cl₂-EtOAc; **5** $R_{\rm F}$ 0.30), diluted with CH₂Cl₂ (400 mL), washed with aq 5% NaHCO₃ and H₂O, dried (Na₂SO₄), filtered, and concentrated. Column chromatography of the residue afforded **5**, isolated as a glass (289 mg, 77%), $[\alpha]_{\rm D}$ +17° (c 1, CHCl₃). NMR data (CDCl₃): 13 C, δ 139.1-137.3 and 128.6-126.3 (C_6 H₅CH₂O and C_6 H₅CH), 135.0 (H₂C=CHCH₂O), 117.1 (H₂C=CHCH₂O), 103.6, 100.9 (C-1" and PhCH), 97.2, 95.0 (C-1,1'), 17.8 (C-6); 1 H, δ 7.412-7.166 (m, 35 H, 7 Ph), 5.459 (m, 1 H, H₂C=CHCH₂O), 5.456 (s, 1 H, PhCH), 5.309 and 5.197 (2 m, each 1 H, H_2 C=CHCH₂O), 5.131 (d, 1 H, H-1'), 1.358 (d, 3 H, H-6,6,6), $J_{1',2'}$ 3.5, $J_{5,6}$ 6.1 Hz. Anal. Calcd for C₇₀H₇₆O₁₅: C, 72.64; H, 6.62. Found: C, 72.28; H, 6.62.

Benzyl 3-O- $\{4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4,6-tetra-O-benzyl-\alpha,\beta-D-allyl-4,6-O-benzylidene-2-O-(2,3,4,6-tetra-O-benzyl-\alpha,\beta-D-allyl-4,6-O-benzylidene-2-O-(2,3,4,6-tetra-O-benzyl-\alpha,\beta-D-allyl-4,6-O-benzylidene-2-O-(2,3,4,6-tetra-O-benzyl-\alpha,\beta-D-allyl-4,6-O-benzylidene-2-O-(2,3,4,6-tetra-O-benzyl-0,a)]$ glucopyranosyl)-β-D-galactopyranosyl]-2,3,6-tri-O-benzyl-α-D-glucopyranosyl}-2,4-di-O-benzyl- α -L-rhamnopyranoside ($6\alpha\beta$).—To a solution of 5 (537 mg, 0.46 mmol) and ethyl 2,3,4,6-tetra-O-benzyl-1-thio-β-D-glucopyranoside⁴ (542 mg, 0.93 mmol) in ether (20 mL), containing powdered 4A molecular sieves (1.5 g), was added methyl triflate⁵ (0.5 mL, 4.56 mmol), and the mixture was stirred for 16 h. Triethylamine (2 mL) was added and, after 5 min, the mixture was diluted with CH₂Cl₂ (250 mL), filtered through Celite, washed with H₂O, dried (Na₂SO₄), filtered, and concentrated. Column chromatography [7:3 light petroleum (bp $40-60^{\circ}$)-EtOAc] of the residue gave 6α , isolated as a white glass (391 mg, 50%), $[\alpha]_D + 52^\circ$ (c 1, CHCl₃), R_E 0.41; and 6β , isolated as a white glass (205 mg, 26%), $[\alpha]_{\rm D}$ +21° (c 1, CHCl₃), $R_{\rm F}$ 0.64. NMR data (CDCl₃): $6\alpha^{-13}$ C, δ 139.0–137.2 and 128.9-126.4 ($C_6H_5CH_2O$ and C_6H_5CH), 134.9 ($H_2C=CHCH_2O$), 117.1(H₂C=CHCH₂O), 102.1, 100.9 (C-1" and PhCH), 97.2, 96.0, and 95.1 (C-1,1',1"'), 18.0 (C-6); 1 H, δ 7.443–7.055 (m, 55 H, 11 Ph), 5.956 (m, 1 H, H₂C=CHCH₂O), 5.471 (s, 1 H, PhCH), 5.312 (d, 1 H, H-1"), 5.144 (d, 1 H, H-1'), 5.255 and 5.076 (2 m, each 1 H, H_2 C=CHCH₂O), 1.228 (d, 3 H, H-6,6,6), J_{56} 6.2, $J_{1'2'}$ 3.8, $J_{1'',2''}$ 3.4 Hz; $6\beta^{-13}$ C, $\delta^{-139.4-137.3}$ and 129.5-126.5 (C_6H_5 CH₂O and C_6H_5 CH), 134.9 (H₂C=CHCH₂O), 117.0 (H₂C=CHCH₂O), 102.4, 102.0, and 101.3 (C-1",1" and PhCH), 97.3, 96.1 (C-1,1'), 17.8 (C-6).

Anal. Calcd for $C_{104}H_{110}O_{20}$: C, 74.35; H, 6.60. Found 6α : C, 74.13; H, 6.88. Found 6β : C, 74.19; H, 6.97.

Benzyl 3-O-{4-O-[3-O-allyl-6-O-benzyl-2-O-(2,3,4,6-tetra-O-benzyl-α-D-gluco-pyranosyl)-β-D-galactopyranosyl]-2,3,6-tri-O-benzyl-α-D-glucopyranosyl}-2,4-di-O-benzyl-α-L-rhamnopyranoside (7).—To a solution of 6α (360 mg, 0.21 mmol) and sodium cyanoborohydride⁶ (168 mg, 2.7 mmol) in freshly distilled tetrahydrofuran (10 mL), containing 3A molecular sieves (1.5 g), was added satd HCl in ether until the evolution of gas ceased. After 1 h, when TLC [7:3 light petroleum (bp $40-60^{\circ}$)-EtOAc] indicated the reaction to be complete, the mixture was diluted with CH₂Cl₂ (250 mL) and H₂O (50 mL), filtered through Celite, washed with aq 5% NaHCO₃ and H₂O, dried (Na₂SO₄), filtered, and concentrated. Column chromatography of the residue gave 7, isolated as a syrup (183 mg, 51%), [α]_D +45° (c 1, CHCl₃), R_F 0.58. ¹³C-NMR data (CDCl₃): δ 138.9-137.2 and 128.7-

127.2 ($C_6H_5CH_2O$), 134.0 ($H_2C=CHCH_2O$), 118.0 ($H_2C=CHCH_2O$), 101.7 (C-1"), 97.3, 96.1, and 95.0 (C-1,1',1"'), 18.0 (C-6).

Anal. Calcd for C₁₀₄H₁₁₂O₂₀: C, 74.26; H, 6.71. Found: C, 74.59; H, 6.72.

Benzyl 3-O-{4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-acetyl-\beta-p-glucopyranosyl)-2-O-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)- β -D-galactopyranosyl]2, 3,6-tri-O-benzyl- α -D-glucopyranosyl}-2,4-di-O-benzyl- α -L-rhamnopyranoside (8).—A solution of silver triflate (160 mg, 0.6 mmol) in toluene (2.5 mL) was added dropwise during 30 min in the dark to a stirred mixture of 7 (132 mg, 78 μ mol), 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide (117 mg, 0.29 mmol), and powdered 4A molecular sieves (500 mg) in CH₂Cl₂ (2 mL) and toluene (2 mL) at -40° . The stirring was continued for 2.5 h at -25° , until TLC (6:1 tolueneacetone) showed the absence of 7 ($R_{\rm F}$ 0.74). Pyridine was added, and the mixture was diluted with CH₂Cl₂ (150 mL), filtered through Celite, washed with aq 10% sodium thiosulfate (2 × 25 mL) and H₂O, dried (Na₂SO₄), filtered, and concentrated. Column chromatography of the residue afforded 8, isolated as a glass (122 mg, 77%), $[\alpha]_D + 32^\circ$ (c 1, CHCl₃), R_F 0.59. NMR data (CDCl₃): ¹³C, δ 170.5, 170.2, 169.3, and 168.8 (4 COCH₃), 138.9-137.2 and 128.9-127.3 (C₆H₅CH₂O), 134.1 (H₂C=CHCH₂O), 117.5 (H₂C=CHCH₂O), 102.2, 99.2, 97.4, 97.0, and 95.5 (C-1,1',1'',1'''), 20.5-20.4 $(COCH_3)$, 18.0 (C-6); ¹H, δ 7.330-7.121 (m, 55 H, 11 Ph), 5.929 (m, 1 H, H₂C=CHCH₂O), 2.028, 1.963, and 1.893 (3 s, 6, 3, 3 H, 4 Ac), 1.281 (d, 3 H, H-6,6,6), J_{5,6} 6.2 Hz.

Benzyl 2,4-di-O-benzyl-3-O- $\{4-O-\{6-O-benzyl-4-O-(2,3,4,6-tetra-O-acetyl-\beta-D-acetyl-3-D$ glucopyranosyl)-2-O-(2,3,4,6-tetra-O-benzyl- α -D-glucopyranosyl)- β -D-galactopyranosyl]-2,3,6-tri-O-benzyl- α -D-glucopyranosyl}- α -L-rhamnopyranoside (9).—A solution of 8 (25 mg, 12.4 \(\mu\)mol), tris(triphenylphosphine)rhodium(I) chloride (15 mg, 16 μ mol), and 1,4-diazobicyclo[2.2.2]octane (5 mg, 45 μ mol) in 7:3:1 EtOH-benzene-H₂O (3 mL) was boiled under reflux⁷ for 16 h, then concentrated. The residue was dissolved in 95:5 acetone-H₂O (4 mL) containing mercury(II) oxide (5 mg, 23 μ mol) and mercury(II) chloride (20 mg, 74 μ mol), and the solution was stirred for 1.5 h at room temperature. When TLC [6:4 light petroleum (bp 40-60°)-EtOAc] indicated complete conversion into 9 ($R_{\rm F}$ 0.58), the mixture was concentrated and then dissolved in CH₂Cl₂ (100 mL). The solution was washed with aq 30% KBr (3 \times 15 mL) and H₂O, dried (Na₂SO₄), filtered, and concentrated. Column chromatography of the residue afforded 9, isolated as a syrup (15 mg, 61%), $[\alpha]_D$ +57° (c 1, CHCl₃). ¹H-NMR data (CDCl₃): δ 7.377–7.085 (m, 55) H, 11 Ph), 2.072, 2.024, 1.973, and 1.760 (4 s, each 1 H, 4 Ac), 1.196 (d, 3 H, H-6,6,6).

3-O-[4-O-(2-O- α -D-Glucopyranosyl-4-O- β -D-glucopyranosyl- β -D-galactopyranosyl)- α -D-glucopyranosyl]- α , β -L-rhamnopyranose ($2\alpha\beta$).—To a solution of 9 (25 mg, 13 μ mol) in MeOH (5 mL) was added sodium methoxide to pH 10. After 16 h, the mixture was neutralised with Dowex-50 (H⁺) resin, filtered, and concentrated. Column chromatography (R_F 0.46, 85:10:5 CH₂Cl₂-acetone-MeOH) of the residue afforded deacetylated 9, isolated as a syrup. To a solution of the residue in

3:2 MeOH–2-propanol (5 mL) containing a few drops of acetic acid was added 10% Pd–C (15 mg), and the mixture was hydrogenolysed at 4 kg/cm² for 16 h, filtered, and concentrated to give $2\alpha\beta$, isolated as a white powder (9.3 mg, 91%), [α]_D +77° (c 1, H₂O). ¹³C-NMR data (D₂O): δ 105.3 (161 Hz) and 102.9 (163 Hz) (C-1",1""), 99.1 (172 Hz) (C-1"'), 96.3 (172 Hz) (C-1', α-Rha anomer), 96.1 (170 Hz) (C-1', β-Rha anomer), 94.9 (169 Hz) (C-1α)¹⁰, 94.8 (156 Hz) (C-1β)¹⁰, 62.3, 62.0, 61.5, and 61.0 (C-6',6",6"',6""), 18.2 (C-6). For the ¹H-NMR data, see Table I.

ACKNOWLEDGMENTS

This investigation was supported by the Netherlands Foundation for Chemical Research (SON/NWO), the Institute of Molecular Biology and Medical Biotechnology (IMB, Utrecht University), and the Netherlands Innovation Directed Programme for Biotechnology (IOP-b). We thank Dr. B.R. Leeflang for recording the 2D ¹H-NMR spectra.

REFERENCES

- 1 J.E.G. van Dam, A. Fleer, and H. Snippe, Antonie van Leeuwenhoek; J. Microbiol. Serol., 58 (1990) 1-47.
- 2 C. Lugowski and H.J. Jennings, Carbohydr. Res., 131 (1984) 119-129.
- 3 A.M.P. van Steijn, J.P. Kamerling, and J.F.G. Vliegenthart, Carbohydr. Res., 211 (1991) 261-277.
- 4 F. Weygand and H. Zeimann, Justus Liebigs Ann. Chem., (1962) 179-198.
- 5 H. Lönn, J. Carbohydr. Chem., 6 (1987) 301-306.
- 6 P.J. Garegg, H. Hultberg, and S. Wallin, Carbohydr. Res., 108 (1982) 97-101.
- 7 E.J. Corey and W.J. Suggs, J. Org. Chem., 38 (1973) 3224.
- 8 D. Marion and K. Wüthrich, Biochem. Biophys. Res. Commun., 113 (1983) 967-974.
- 9 A. Bax and D.G. Davis, J. Magn. Reson., 65 (1985) 355-360.
- 10 K. Bock, C. Pedersen, and H. Pedersen, Adv. Carbohydr. Chem. Biochem., 42 (1984) 193-225.
- 11 C. Laffite, A.M. Nguygen Phuoc Du, F. Winternitz, R. Wylde, and F. Pratviel-Sosa, Carbohydr. Res., 67 (1978) 91-103.